The Evolution of Technology – The History of Computers

While computers are now an important part of the lives of human beings, there was a time where computers did not exist. Knowing the history of computers and how much progression has been made can help you understand just how complicated and innovative the creation of computers really is.

Unlike most devices, the computer is one of the few inventions that does not have one specific inventor. Throughout the development of the computer, many people have added their creations to the list required to make a computer work. Some of the inventions have been different types of computers, and some of them were parts required to allow computers to be developed further.

The Beginning

Perhaps the most significant date in the history of computers is the year 1936. It was in this year that the first “computer” was developed. It was created by Konrad Zuse and dubbed the Z1 Computer. This computer stands as the first as it was the first system to be fully programmable. There were devices prior to this, but none had the computing power that sets it apart from other electronics.

It wasn’t until 1942 that any business saw profit and opportunity in computers. This first company was called ABC computers, owned and operated by John Atanasoff and Clifford Berry. Two years later, the Harvard Mark I computer was developed, furthering the science of computing.

Over the course of the next few years, inventors all over the world began to search more into the study of computers, and how to improve upon them. Those next ten years say the introduction of the transistor, which would become a vital part of the inner workings of the computer, the ENIAC 1 computer, as well as many other types of systems. The ENIAC 1 is perhaps one of the most interesting, as it required 20,000 vacuum tubes to operate. It was a massive machine, and started the revolution to build smaller and faster computers.

The age of computers was forever altered by the introduction of International Business Machines, or IBM, into the computing industry in 1953. This company, over the course of computer history, has been a major player in the development of new systems and servers for public and private use. This introduction brought about the first real signs of competition within computing history, which helped to spur faster and better development of computers. Their first contribution was the IBM 701 EDPM Computer.

A Programming Language Evolves

A year later, the first successful high level programming language was created. This was a programming language not written in ‘assembly’ or binary, which are considered very low level languages. FORTRAN was written so that more people could begin to program computers easily.

The year 1955, the Bank of America, coupled with Stanford Research Institute and General Electric, saw the creation of the first computers for use in banks. The MICR, or Magnetic Ink Character Recognition, coupled with the actual computer, the ERMA, was a breakthrough for the banking industry. It wasn’t until 1959 that the pair of systems were put into use in actual banks.

During 1958, one of the most important breakthroughs in computer history occurred, the creation of the integrated circuit. This device, also known as the chip, is one of the base requirements for modern computer systems. On every motherboard and card within a computer system, are many chips that contain information on what the boards and cards do. Without these chips, the systems as we know them today cannot function.

Gaming, Mice, & the Internet

For many computer users now, games are a vital part of the computing experience. 1962 saw the creation of the first computer game, which was created by Steve Russel and MIT, which was dubbed Spacewar.

The mouse, one of the most basic components of modern computers, was created in 1964 by Douglass Engelbart. It obtained its name from the “tail” leading out of the device.

One of the most important aspects of computers today was invented in 1969. ARPA net was the original Internet, which provided the foundation for the Internet that we know today. This development would result in the evolution of knowledge and business across the entire planet.

It wasn’t until 1970 that Intel entered the scene with the first dynamic RAM chip, which resulted in an explosion of computer science innovation.

On the heels of the RAM chip was the first microprocessor, which was also designed by Intel. These two components, in addition to the chip developed in 1958, would number among the core components of modern computers.

A year later, the floppy disk was created, gaining its name from the flexibility of the storage unit. This was the first step in allowing most people to transfer bits of data between unconnected computers.

The first networking card was created in 1973, allowing data transfer between connected computers. This is similar to the Internet, but allows for the computers to connect without use of the Internet.

Household PC’s Emerge

The next three years were very important for computers. This is when companies began to develop systems for the average consumer. The Scelbi, Mark-8 Altair, IBM 5100, Apple I and II, TRS-80, and the Commodore Pet computers were the forerunners in this area. While expensive, these machines started the trend for computers within common households.

One of the most major breathroughs in computer software occurred in 1978 with the release of the VisiCalc Spreadsheet program. All development costs were paid for within a two week period of time, which makes this one of the most successful programs in computer history.

1979 was perhaps one of the most important years for the home computer user. This is the year that WordStar, the first word processing program, was released to the public for sale. This drastically altered the usefulness of computers for the everyday user.

The IBM Home computer quickly helped revolutionize the consumer market in 1981, as it was affordable for home owners and standard consumers. 1981 also saw the the mega-giant Microsoft enter the scene with the MS-DOS operating system. This operating system utterly changed computing forever, as it was easy enough for everyone to learn.

The Competition Begins : Apple vs. Microsoft

Computers saw yet another vital change during the year of 1983. The Apple Lisa computer was the first with a graphical user interface, or a GUI. Most modern programs contain a GUI, which allows them to be easy to use and pleasing for the eyes. This marked the beginning of the out dating of most text based only programs.

Beyond this point in computer history, many changes and alterations have occurred, from the Apple-Microsoft wars, to the developing of microcomputers and a variety of computer breakthroughs that have become an accepted part of our daily lives. Without the initial first steps of computer history, none of this would have been possible.

Posted in Uncategorized | Tagged , | Comments Off

Beginner’s Guide to Computer Forensics

Introduction
Computer forensics is the practice of collecting, analysing and reporting on digital information in a way that is legally admissible. It can be used in the detection and prevention of crime and in any dispute where evidence is stored digitally. Computer forensics has comparable examination stages to other forensic disciplines and faces similar issues.

About this guide
This guide discusses computer forensics from a neutral perspective. It is not linked to particular legislation or intended to promote a particular company or product and is not written in bias of either law enforcement or commercial computer forensics. It is aimed at a non-technical audience and provides a high-level view of computer forensics. This guide uses the term “computer”, but the concepts apply to any device capable of storing digital information. Where methodologies have been mentioned they are provided as examples only and do not constitute recommendations or advice. Copying and publishing the whole or part of this article is licensed solely under the terms of the Creative Commons – Attribution Non-Commercial 3.0 license

Uses of computer forensics
There are few areas of crime or dispute where computer forensics cannot be applied. Law enforcement agencies have been among the earliest and heaviest users of computer forensics and consequently have often been at the forefront of developments in the field. Computers may constitute a ‘scene of a crime’, for example with hacking [ 1] or denial of service attacks [2] or they may hold evidence in the form of emails, internet history, documents or other files relevant to crimes such as murder, kidnap, fraud and drug trafficking. It is not just the content of emails, documents and other files which may be of interest to investigators but also the ‘meta-data’ [3] associated with those files. A computer forensic examination may reveal when a document first appeared on a computer, when it was last edited, when it was last saved or printed and which user carried out these actions.

More recently, commercial organisations have used computer forensics to their benefit in a variety of cases such as;

Intellectual Property theft
Industrial espionage
Employment disputes
Fraud investigations
Forgeries
Matrimonial issues
Bankruptcy investigations
Inappropriate email and internet use in the work place
Regulatory compliance
Guidelines
For evidence to be admissible it must be reliable and not prejudicial, meaning that at all stages of this process admissibility should be at the forefront of a computer forensic examiner’s mind. One set of guidelines which has been widely accepted to assist in this is the Association of Chief Police Officers Good Practice Guide for Computer Based Electronic Evidence or ACPO Guide for short. Although the ACPO Guide is aimed at United Kingdom law enforcement its main principles are applicable to all computer forensics in whatever legislature. The four main principles from this guide have been reproduced below (with references to law enforcement removed):

No action should change data held on a computer or storage media which may be subsequently relied upon in court.

In circumstances where a person finds it necessary to access original data held on a computer or storage media, that person must be competent to do so and be able to give evidence explaining the relevance and the implications of their actions.

An audit trail or other record of all processes applied to computer-based electronic evidence should be created and preserved. An independent third-party should be able to examine those processes and achieve the same result.

The person in charge of the investigation has overall responsibility for ensuring that the law and these principles are adhered to.
In summary, no changes should be made to the original, however if access/changes are necessary the examiner must know what they are doing and to record their actions.

Live acquisition
Principle 2 above may raise the question: In what situation would changes to a suspect’s computer by a computer forensic examiner be necessary? Traditionally, the computer forensic examiner would make a copy (or acquire) information from a device which is turned off. A write-blocker[4] would be used to make an exact bit for bit copy [5] of the original storage medium. The examiner would work then from this copy, leaving the original demonstrably unchanged.

However, sometimes it is not possible or desirable to switch a computer off. It may not be possible to switch a computer off if doing so would result in considerable financial or other loss for the owner. It may not be desirable to switch a computer off if doing so would mean that potentially valuable evidence may be lost. In both these circumstances the computer forensic examiner would need to carry out a ‘live acquisition’ which would involve running a small program on the suspect computer in order to copy (or acquire) the data to the examiner’s hard drive.

By running such a program and attaching a destination drive to the suspect computer, the examiner will make changes and/or additions to the state of the computer which were not present before his actions. Such actions would remain admissible as long as the examiner recorded their actions, was aware of their impact and was able to explain their actions.

Stages of an examination
For the purposes of this article the computer forensic examination process has been divided into six stages. Although they are presented in their usual chronological order, it is necessary during an examination to be flexible. For example, during the analysis stage the examiner may find a new lead which would warrant further computers being examined and would mean a return to the evaluation stage.

Readiness
Forensic readiness is an important and occasionally overlooked stage in the examination process. In commercial computer forensics it can include educating clients about system preparedness; for example, forensic examinations will provide stronger evidence if a server or computer’s built-in auditing and logging systems are all switched on. For examiners there are many areas where prior organisation can help, including training, regular testing and verification of software and equipment, familiarity with legislation, dealing with unexpected issues (e.g., what to do if child pornography is present during a commercial job) and ensuring that your on-site acquisition kit is complete and in working order.

Evaluation
The evaluation stage includes the receiving of clear instructions, risk analysis and allocation of roles and resources. Risk analysis for law enforcement may include an assessment on the likelihood of physical threat on entering a suspect’s property and how best to deal with it. Commercial organisations also need to be aware of health and safety issues, while their evaluation would also cover reputational and financial risks on accepting a particular project.

Collection
The main part of the collection stage, acquisition, has been introduced above. If acquisition is to be carried out on-site rather than in a computer forensic laboratory then this stage would include identifying, securing and documenting the scene. Interviews or meetings with personnel who may hold information which could be relevant to the examination (which could include the end users of the computer, and the manager and person responsible for providing computer services) would usually be carried out at this stage. The ‘bagging and tagging’ audit trail would start here by sealing any materials in unique tamper-evident bags. Consideration also needs to be given to securely and safely transporting the material to the examiner’s laboratory.

Analysis
Analysis depends on the specifics of each job. The examiner usually provides feedback to the client during analysis and from this dialogue the analysis may take a different path or be narrowed to specific areas. Analysis must be accurate, thorough, impartial, recorded, repeatable and completed within the time-scales available and resources allocated. There are myriad tools available for computer forensics analysis. It is our opinion that the examiner should use any tool they feel comfortable with as long as they can justify their choice. The main requirements of a computer forensic tool is that it does what it is meant to do and the only way for examiners to be sure of this is for them to regularly test and calibrate the tools they use before analysis takes place. Dual-tool verification can confirm result integrity during analysis (if with tool ‘A’ the examiner finds artefact ‘X’ at location ‘Y’, then tool ‘B’ should replicate these results.)

Presentation
This stage usually involves the examiner producing a structured report on their findings, addressing the points in the initial instructions along with any subsequent instructions. It would also cover any other information which the examiner deems relevant to the investigation. The report must be written with the end reader in mind; in many cases the reader of the report will be non-technical, so the terminology should acknowledge this. The examiner should also be prepared to participate in meetings or telephone conferences to discuss and elaborate on the report.

Review
Along with the readiness stage, the review stage is often overlooked or disregarded. This may be due to the perceived costs of doing work that is not billable, or the need ‘to get on with the next job’. However, a review stage incorporated into each examination can help save money and raise the level of quality by making future examinations more efficient and time effective. A review of an examination can be simple, quick and can begin during any of the above stages. It may include a basic ‘what went wrong and how can this be improved’ and a ‘what went well and how can it be incorporated into future examinations’. Feedback from the instructing party should also be sought. Any lessons learnt from this stage should be applied to the next examination and fed into the readiness stage.

Issues facing computer forensics
The issues facing computer forensics examiners can be broken down into three broad categories: technical, legal and administrative.

Encryption – Encrypted files or hard drives can be impossible for investigators to view without the correct key or password. Examiners should consider that the key or password may be stored elsewhere on the computer or on another computer which the suspect has had access to. It could also reside in the volatile memory of a computer (known as RAM [6] which is usually lost on computer shut-down; another reason to consider using live acquisition techniques as outlined above.

Increasing storage space – Storage media holds ever greater amounts of data which for the examiner means that their analysis computers need to have sufficient processing power and available storage to efficiently deal with searching and analysing enormous amounts of data.

New technologies – Computing is an ever-changing area, with new hardware, software and operating systems being constantly produced. No single computer forensic examiner can be an expert on all areas, though they may frequently be expected to analyse something which they haven’t dealt with before. In order to deal with this situation, the examiner should be prepared and able to test and experiment with the behaviour of new technologies. Networking and sharing knowledge with other computer forensic examiners is also very useful in this respect as it’s likely someone else may have already encountered the same issue.

Anti-forensics – Anti-forensics is the practice of attempting to thwart computer forensic analysis. This may include encryption, the over-writing of data to make it unrecoverable, the modification of files’ meta-data and file obfuscation (disguising files). As with encryption above, the evidence that such methods have been used may be stored elsewhere on the computer or on another computer which the suspect has had access to. In our experience, it is very rare to see anti-forensics tools used correctly and frequently enough to totally obscure either their presence or the presence of the evidence they were used to hide.

Legal issues
Legal arguments may confuse or distract from a computer examiner’s findings. An example here would be the ‘Trojan Defence’. A Trojan is a piece of computer code disguised as something benign but which has a hidden and malicious purpose. Trojans have many uses, and include key-logging [7], uploading and downloading of files and installation of viruses. A lawyer may be able to argue that actions on a computer were not carried out by a user but were automated by a Trojan without the user’s knowledge; such a Trojan Defence has been successfully used even when no trace of a Trojan or other malicious code was found on the suspect’s computer. In such cases, a competent opposing lawyer, supplied with evidence from a competent computer forensic analyst, should be able to dismiss such an argument.

Accepted standards – There are a plethora of standards and guidelines in computer forensics, few of which appear to be universally accepted. This is due to a number of reasons including standard-setting bodies being tied to particular legislations, standards being aimed either at law enforcement or commercial forensics but not at both, the authors of such standards not being accepted by their peers, or high joining fees dissuading practitioners from participating.

Fitness to practice – In many jurisdictions there is no qualifying body to check the competence and integrity of computer forensics professionals. In such cases anyone may present themselves as a computer forensic expert, which may result in computer forensic examinations of questionable quality and a negative view of the profession as a whole.

Resources and further reading
There does not appear to be a great amount of material covering computer forensics which is aimed at a non-technical readership. However the following links at links at the bottom of this page may prove to be of interest prove to be of interest:

Glossary
1. Hacking: modifying a computer in way which was not originally intended in order to benefit the hacker’s goals.
2. Denial of Service attack: an attempt to prevent legitimate users of a computer system from having access to that system’s information or services.
3. Meta-data: at a basic level meta-data is data about data. It can be embedded within files or stored externally in a separate file and may contain information about the file’s author, format, creation date and so on.
4. Write blocker: a hardware device or software application which prevents any data from being modified or added to the storage medium being examined.
5. Bit copy: bit is a contraction of the term ‘binary digit’ and is the fundamental unit of computing. A bit copy refers to a sequential copy of every bit on a storage medium, which includes areas of the medium ‘invisible’ to the user.
6. RAM: Random Access Memory. RAM is a computer’s temporary workspace and is volatile, which means its contents are lost when the computer is powered off.
7. Key-logging: the recording of keyboard input giving the ability to read a user’s typed passwords, emails and other confidential information.

Jonathan Krause has over eleven years’ experience in IT security and seven years’ experience in commercial and law enforcement digital forensics, having worked for the Metropolitan Police at the Hi-Tech Crime Unit at New Scotland Yard as a computer forensic analyst and latterly as a independent consultant who has conducted a very wide range of investigations on behalf of commercial organisations involving fraud, deception, IP theft, murder, drug trafficking and child

Posted in Uncategorized | Tagged | Comments Off